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CURVED FLOW OF A VISCOUS LIQUID IN AN AXIRADIAL CHANNEL 

Yu. E. Karyakin UDC 532.542 

The motion of a viscous liquid is an axiradial channel with curving of the flow 
is investigated with the aid of the implicit method of splitting according to 
spatial variables. The effect of the Reynolds number and of the intensity of 
the curving on the formation of regions of reverse flows is established. 

The nature of the flow of a liquid or gas in turbine channels and various kinds of vor- 
tex installations depends largely on the initial curving of the flow and the regularity of 
its change. It was established [I] that even when a model of ideal gas in axiradial channels 
is used, regions with reverse flow may be obtained. The disposition and intensity of these 
regions are determined by the flow parameters at the inlet. 

Tret'yakov and Yagodkin [2] investigated viscous curved flow of liquid in annular chan- 
nels. They showed that the intensity of the curvature of the flow has a substantial effect 
on the magnitude of the frictional surface tension and the formation of zones of reverse 
flows. 

The present work is an investigation of curved flow of a liquid in axiradial channels 
on the basis of the Navier--Stokes equations. 

Let us examine the steady motion of a viscous incompressible liquid in an axiradial 
channel whose meridional section is formed by some piecewise smooth curved lines AB, BC, CD, 
and AD (Fig. i). The z axis is the axis of symmetry of the channel. 

We use a system of cylindrical polar coordinates, We assume that in the plane of the 
channel section there exists some pole O (Re, Zo) for which the following correlation be- 
tween the cylindrical (R, ~, z) and cylindrical polar coordinates (r, ~f,, 0) of an arbitrary 
point M (Fig. i) exists: R = Re -- r cos 0, ~=~, z = Zo + r sin 0, where @ is the azimuth 
angle. 

The boundaries AD, AB, BC, and DC of the meriodional channel section are specified by 
the equations e = el(r), r = rx(e), e = e2(r), r = r2(e), respectively. All these functions 
have to be piecewise smooth. 

We assume that the flow is axisymmetric, and then we write the dimensionless Navier-- 
Stokes equations of the examined laminar motion of an incompressible liquid in a system of 
cylindrical polar coordinates in the form 

u Ou Ou uv 

V- + -  
1 [ A u - -  t 1 + s i n  zO 

Re ~ ~ 7  m / U 
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Fig. io 
in the plane of the coordinates R, z 
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Meridional section of an axiradial channel 
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Ov tr ~'~ a/'~ ] f " | 3 C0S20) 2 a u  (1 O) sinO ] u av+v - - + .  c o s o =  ~ a v _ ( _ y g  . cos --7- o-T Or r R Or Re . ~- R 2 v - -  t "2 ao r R - - ~  st , 

,, ~ ow 1 rau, 
r 00" q- v ~ "6 (u sin 0 -- v cos O) w [ __ __ 

R Re R~ ' (3 )  

a (Ru) -F a (Rrv) : :  O. 
O0 Or Here b is the operator, 

(4) 

1 5= __a = sinO a__ (1__ cosO) a 
a ~ r~- ao" ~ Or = + rR O0 -}" r R Or 

The system of equations (1)-(4) is solved with the following boundary conditions: 

u --- v = w -- o on the walls AB and DC; 
( 5 )  

U = U (r), v == V (r), ~ ---= W (r) at the inlet AD. 

On the outlet edge of the channel BC "soft" conditions are specified. We will seek the 
solution of the problem in the variables: flow function ~- vorticity to- azimuthal speed w. 
Then 

l O0; l O~ l i a r  a(ru)] 
- -  , V - -  , 0 ) : =  - -  

u = -  R Or rR ao r ao Or 

E q u a t i o n  (4 )  is satisfied identically, and (1)-(3) are changed to the form 

ao rR ao -v 0--7 R O r .  = rm' ( 6 )  

�9 0"-7 ~, R @O, r aO R ar - -R , r O0 

q_sinOa-,-"; .... I [ ! a r a(o,R) ~ I a I a(toR)]  
Or ) Re r Or R Or i" '~ ao R ao ' 

( 7 )  

,~--; -g-d! ~R~ ao a~ ; = - f i e  ~ ar R a~ ~, ao R ao " 
We t r a n s f o r m  t h e  f l o w  r e g i o n  ABCD w i t h  a r b i t r a r y  c u r v e d  b o u n d a r i e s  i n t o  t h e  s q u a r e  

A ' B ' C ' D '  ( F i g ,  1)  w i t h  a s i d e  o f  u n i t  l e n g t h .  F o r  t h a t  we c a r r y  o u t  t h e  f o l l o w i n g  t r a n s -  
f o r m a t i o n  with nonzero Jacobian: 

=_- 0 - -  O, (r) r - -  r 1 (O) 
' q== (9) O= (r) - -  O~ (r) r~ (0) - r~ (0) 

We assume that the functions r l (0), r:(0), 01 (r), and 0=(r) are stipulated analytically 
or in tabulated form for the intervals of changes of the arguments @ and r that are necessary 
for ( 9 ) .  
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In a corresponding way Eqs. ( 6 ) - ( 8 )  are transformed in the new variables ~, h, and we 
write the boundary conditions (5) as follows: 

dU , = - ~ l ; - ' j '  u(~l)ea~, (o=-n~-E~- n , w = w 0 0  fo~ ~:.o, 
0 

~ ' : = 0 ,  o :  R 1 _L. ~ ~ 0  for .~----0, 
r= ,I a~l ~ 

(10) 

* = * * = - ' V ' ! '  u ( n ) ' ~ a n , ~  g ,'~ / ~  ~ = 0  ~or ~: :~,  

a ~ , _ ~ = ~ _  am a= = 0  for. ~ = 1 .  

Here, nr ~ 3n/3r, R e ~ 3n/Be. In the boundary conditions (I0) it was accepted that Or(r) 
O, V(r) ~ 0. 

To obtain the finite-difference analog of the Navier--Stokes equations, we construct a 
the grid of coordinate lines gi = const, ~j = const with constant steps Ag, AN: gi = (i -- 
l)Ag, nj = (j --l)An; i = i, 2, ..., N; j = l, 2, ..., M. 

We find the steady-state solution of the problem by the method of establishment. It is 
assumed that the sought magnitudes depend on some time parameter t. The limit value of these 
magnitudes for t + = and boundary conditions not dependent on time is taken as the sought 
steady-state solution of the problem under examination. 

We introduce the vector f = {wR, 4, mR} into the examination. We denote its value at 
n 

the point (~i, ~j)n, where n is the number of the time-dependent layer, by fi,j. The con- 
vective derivatives in the Navier--Stokes equations at the point (El, nj) n will be approxi- 
mated by the scheme of the "donor cell" [3] that takes the direction of the flow into ac- 
count, and the second and mixed derivatives will be approximated on the nine-polnt pattern 
(Fig. i). As a result we obtain the finite-difference schema in the form 

li II 
II I!' . n ~  H2 (I1) 

i = 1 ,  2 ,  . . . .  N --  1 ; j  = 2 ,  . . . .  M --  1 ,  c o r r e l a t i n g  t h e  v a l u e s  o f  t h e  s o u g h t  l a t t i c e  f u n c -  
t i o n s  on the n-th time-dependent layer. 

For the transition from the n-th time-dependent layer to the (n + I) layer we introduce 
the correction AX and AY to the vector of the sought functions fn (we omit the subscripts), 
so that 

1 ] 

f"+ "'~- = y" + AX; f "+ '  = f "+ "~-+ AY 

The equations for the corrections are determined by the initial differential equations 
written in nonsteady form and split into the directions ~ and n: 

2AX OAX ~ A X  (12 )  �9 A=--~"+ B= T +c= ~+H(f")=o, 
1 

2AY OAY ~ A Y  H (  ~ + - ~ "  ) f  0, ( 1 3 )  
A,---E/- + By --E~- + Cy ~ +  = 

where 

,4= = A v = A; B ~ =  ugo B; B v =  0 + w~ B; C~ = C; 
r \ r  / 

( ) c,~ = k-F r -  + ~2 c.. 
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Fig. 2. Flow lines in an axiradial channel with Re = 2000 and 
no curving of the flow. 

Fig. 3. Change of the longitudinal component of the tangential 
stress on the inner channel wall and with Re = i00 and dif- 
ferent curvings: i) Ko = 0 (W ~ 0); 2) 0.85 (W = 1 -- 0.3n); 3) 
1.15 (W = 1 + 0.3n); 4) 2.3 (W = 2 + 0.6n); 5) 4.25 (W = 5- 
l.Sn); 6) 5.75 (W = 5 + 1.5n). 0, deg. 

A = Ili~ o 111 

1 0 

; B - - -  0 0 

0 0 i ; 

C = 

1 
0 

Re 

r 
0 

R 

0 0 

0 ; 

I 

Re 

a is a parameter that changes the time scale in the equations for the component ~; ~0 ~ 8~/ 
Be. 

The boundary conditions for the vectors AX and AY were formulated with a view to (i0), 
and the expression for the correction for vorticity on the wall was written with second order 
of accuracy, and a special correction of the longitudinal velocity was carried out at the 
points of the difference lattice that are one step distant from the wall [4]. In the cal- 
culation of flow with complex configuration and with regions of reverse flow such a way of 
stating the boundary conditions proved to be more effective. 

The solution of Eqs. (12), (13) was effected by the implicit difference schema by two 
successive vector matchings in the directions of the ~ and n axes. As a result we deter- 
mined the value of the vector fn+~ on the new time-dependent layer. The process of estab- 
lishment was considered completed when the change of the sought functions became smaller 
than a previously stipulated small number e. 

The calculation method described above was used for investigating the motion of a liquid 
in an axiradial channel with a turn of the flow through 90 ~ . The coordinates of the boundary 
points of the channel illustrated in Fig. 2 were stipulated in tabular form with successive 
smoothing with the aid of spline functions [5]. At the channel inlet we adopted with profile 
of the longitudinal velocity U(~) corresponding to flow in a cylindrical annular pipe, and 
of the circumferential velocity according to the linear regularity W(n) = ~ + Sn, where ~, 
B are constants. 

Thus, when the geometry of the channel is known, the principal parameters of the problem 
are the Reynolds number and the values of ~ and 8. 

The calculations of the flow were carried out in the range of the so-called "moderate" 
Reynolds numbers 10~Re~-~ 2000 where the motion of the liquid is of laminar nature. The 
Reynolds number was determined according to the width of the inlet section of the channel 
and the maximum longitudinal velocity in this section. 
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Fig. 4. Change of the relative curving of 
the flow in the radial sections of the chan- 
nel for W(n) = 2 + 0.6~: i) Re = i0; 2) 25; 
3) 50; 4) i00; 5) 200. 

First of all we will describe the results of the calculation of the flow in an axiradial 
channel when there is no curving of the flow at the inlet. These calculations showed that 
for Re < I00 the flow in the channel is of unidirectional nature without zones of reverse 
motions. When Re = I00, a closed zone of reverse motion of the liquid appears on the inner 
wall AB of the channel in the region of its turn, and this zone increases with increasing Re. 
When the Reynolds number Re = 200, the closed region of reverse flow also appears on the 
outer wall DC when 0 = 45 ~ With increasing Reynolds number this region spreads downstream 
fairly intensely, and when Re = 500, we find that the liquid flows in through the part of the 
outlet section adjacent to point C. Figure 2 shows the regions of developed reverse flow 
corresponding to Re = 2000. 

If the flow at the channel inlet is curved, then the above-described development of the 
zones of reverse flow becomes more pronounced with increasing parameter Ko characterizing the 
intensity of the curving of the flow at the initial section: 

rA 

Ko = ,! ~ (r) gr. 
rD 

Thus, with Ko = 1.15 (~ = i; B = 0.3) the flow pattern analogous to the one in Fig. 2 
occurs already with Re = 500. With values Ko = 4-5 and Re ~ i00, the regions of reverse flow 
approaches the inlet section of the channel. This is clearly visible in Fig. 3 which shows 
the distribution of the dimensionless longitudinal component of the tangential stress PnT on 
the lower channel wall AB (~, n are the tangent unit vector and the unit vector of the normal 
to the wall, respectively). If we assume that at the points of detachment and attachment of 
the flow PnT = 0, it follows from Fig. 3 that with strong initial curving of the flow (Ko = 
5.75) reverse flow occupies practically the entire region near the wall AB. 

Under real conditions this means that liquid behind the outlet section of the channel 
may penetrate through the zone of reverse flow into elements of the installation situated 
ahead of the inlet to the channel. All these phenomena are undesirable, they impair the ef- 
ficiency of operation of the channel. 

.-- __[ rg 

Figure 4 shows the dependence of K=K0 f~dr on the angle 0 in the radial sections (0 = 
r~ 

const) of the channel for the curving W(~) = 2 + 0.6n (Ko = 2.3). With Re = i0 this depen- 
dence is of a monotonically decreasing nature owing to the substantial dissipative effect of 
the viscosity forces. With increasing Re this dependence becomes ever more nonmonotonic be- 
cause the effect of the viscosity forces becomes weaker, and the radial section of the chan- 
nel in some parts then lies in the r_egion of higher values of curving. Nearer the outlet 
part of the channel the dependence K(0) is of a monotonically decreasing nature, also be- 
cause of the damping effect of viscosity. 

The suggested method may be used in the process of designing channels. In the course of 
a numerical experiment it is possible by deliberately changing channel geometry to attain that 
there are no regions of reverse flow, and thereby to improve the efficiency of the channel. 
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In conclusion we want to point out that the calculations were carried out with a lat- 
tice 21 x 21. Control calculations with a lattice 41 x 41 showed that the relative devia- 
tion of the sought values in the entire range of the calculation lay within 3%. 

NOTATION 

R, ~, z, cylindrical coordinates; r, @, 0, cylindrical polar coordinates; Ro, zo, co- 
ordinates of the point 0; v, w, u, velocity components in the system of cylindrical polar 
coordinates; ~, flow function; m, vorticity; ~, q, new variables; p, pressure; Re, Reynolds 
number; A~, An, steps of the lattice; H, vector of discrepancies of the Navier--Stokes equa- 
tions; AX, &Y, vectors of corrections for the sought solution. 

l. 

2. 

3. 

4. 
5. 

LITERATURE CITED 

M. I. Zhukovskii and Yu. E. Karyakin, "Calculation of swirl flow of gas in an axiradial 
diffuser when there are reverse flows," Energomashinostroenie, No. 8, 7-10 (1978). 
V. V. Tret'yakov and V. I. Yagodkin, "Numerical investigation of laminar curved flow in 
an annular channel," Inzh.-Fiz. Zh., 34, No. 2, 273-280 (1978). 
R. A. Gentry, R. E. Martin, and B. J. Daly, "An Eulerian differencing method for un- 
steady compressible flow problems," J. of Comput. Phys., No. i, 87-118 (1966). 
P. Roach, Computing Hydrodynamics [Russian translation], Mir, Moscow (1980). 
C. H. Reinsch, "Smoothing by spline functions," Numerische Mathematik, No. 3, 177-183 
(1967). 

FINITE-DIFFERENCE SOLUTION OF THE CONJUGATE HEAT TRANSFER, 

NATURAL CONVECTION, AND SOLIDIFICATION PROBLEM 

F. V. Ned.pekin and S. S. Petrenko UDC 532.54:536.252 

A mathematical model of the solidification of a binary melt under convection condi- 
tions with a two-phase zone taken into account is formulated on the basis of average 
transfer equations. Results of a numerical solution are presented. 

The solidification of binary alloys is characterized by the presence of an intermediate 
domain which is a heterogeneous mixture of the liquid and solid phases and a so-called two- 
phase zone. As is known, the reason for the formation of such a zone [i] is the development 
of concentration and kinetic supercooling. 

Two approaches exist for the compilation of the heat, mass, and momentum balance equa- 
tions for the two-phase zone in a mathematical description of melt solidification. In one 
formal replacement of the heterogeneous by a homogeneous medium is assumed, where the thermo- 
physical parameters of the latter are defined as average. Then the process is described by 
equations for a homogeneous medium. Here can also be referred the method of using effective 
physical, experimentally determined, parameters in these equations. 

The second approach, which possesses great generality, is based on the mechanics of multi- 
phase media [2] and assumes the examination of the two-phase zone in the approximation of 
average macrocontinuums [3]. The selection of the averaging method is also quite important 
here. Averaging over the volume of macropoints, executed according to known rules, is the 

most natural. 

In this paper, both approaches are applied in formulating the problem. The average heat 
and mass transfer differential equations 

I ~ c ,  + (l - -  ~) c~]  aT ~ (1) r)t- ~-c~p(l --~:)i,>vT~ VI~.~v~T+~2V(I--~) T] ~- Lp 0~. 
~ Ot ' 

oc o~ (2) 
( I - - ~ ) ~ - - , v I D v ( I - - ~ ) C I + ( I - - k ) C  Ot 
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